IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Crystal optical properties of incommensurate phases in the plane-wave modulation region

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys.: Condens. Matter 9 9259
(http://iopscience.iop.org/0953-8984/9/43/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.209
The article was downloaded on 14/05/2010 at 10:52

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Matt&r(1997) 9259-9273. Printed in the UK PIl: S0953-8984(97)78898-2

Crystal optical properties of incommensurate phases in the
plane-wave modulation region

O S Kushnir
Physics Department, Lviv State University, Lviv 54, PO Box 3154, 290054 Lviv, Ukraine

Received 24 October 1996, in final form 8 July 1997

Abstract. Crystal optical properties of anisotropic optical materials of which the dielectric
tensor is spatially modulated with a sinusoidal wave form are studied in the framework of the
Jones calculus. Propagation of polarized light along the directions parallel to and far from the
optical axes is considered. Polarization of the normal waves of the medium and the Jones matrix
of a finite modulated crystal are derived, enabling us to ascertain the parameters of the apparent
macroscopic optical activity. The developed model should describe the optical effects in a plane-
wave region of incommensurate phases with the average inversion symmetry, occurring in the
A2BX4 family crystals. The boundary conditions for the phase of the modulation wave, which
play a key role in crystal optics of incommensurate phases, are discussed. The model predicts a
relatively small optical activity in the birefringent crystal sections and negligible or zero effect

in the optical axis directions. The conclusions agree well, at least, with the non-contradictory
experimental results on optical rotatory power of thegBX, crystals. A comparison with the
results derived earlier for the square modulation wave proves that the main conclusions of the
model do not depend on the exact modulation shape.

1. Introduction

In spite of remarkable success in understanding the nature and properties of
incommensurately modulated phases in dielectrics (Cummins 1990) there still remain
experimental results that have not yet been satisfactorily explained. One of the most
prominent examples is the existence of optical activity (OA) in incommensurate (IC)
crystals of the ABX, family. The effect has been discovered by Uesu and Kobayashi
(1985) with a complex experimental technique (the so-called HAUP, high-accuracy universal
polarimeter—see Kobayasht al 1986) applied to linearly birefringent crystal sections. In

the last decade, an increasing number of experimental studies has been reported by different
authors on this controversial problem (see, e.g. Dijkstral 1992b, Folciaet al 1993,
Kobayashiet al 1993, 1994, Kushniet al 1993, Meekes and Janner 1988, Ortegaal

1992, Saitoet al 1990). From the very recent results we mention here those obtained by
Ortegaet al (1995), Simonret al (1996), Kremers and Meekes (1995, 1996) and Kremers

et al (1996). In the first of the quoted works, an OA value which is almost outside
the capacity of the experiment has been found in the case eZrily, and the data

of Kobayashiet al (1988), when reprocessed, have been shown to give nearly the same
result. Kremerset al (1996) have reported a detailed study @f(CHg)4)2ZnCls, with

a conclusion concerning the clearly zero gyration compongntsgss and gi13 (see also

Simon et al 1996) that contradicts the observations by Kobayaghal (1993). At the

same time, the measurements by Kremers and Meekes (1996) on the related compound
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(N(CHg)4)2ZnCl, gBr1 > have revealed that the OA can be affected by the IC modulation.
Finally, a non-zero OA and optical indicatrix rotation have been observed by Kremers and
Meekes (1995) in the IEN(CHs)4)2,CuCl,. Although differing in many important details,

this agrees with the findings of Uesu and Kobayashi (1985) and 8&a#b(1990).

Theoretical aspects of the problem attract much attention from researchers (Dijlaitra
1992a, Etxebarria 1994, Kobayashi 1990, Kushnir and Vlokh 1993, Meekes and Janner 1988
etc). Indeed, the characteristic dimension relevant for the optical response increases in the
modulated medium up to the spatial period of the IC superstructure, providing the possibility
of a strong spatial dispersion that can give rise to an OA effect (Agranovich and Ginzburg
1979). However OA as a third-rank tensorial property should be macroscopically forbidden
(see Dvoralet al 1983, Folciaet al 1993 and several references therein, Nye 1985) because
of the inversion centre included in the point symmetry group of the ‘average’ IC structure
(the superspace groups describing exhaustively the symmetry of the modulated crystals are
centrosymmetric too).

The most consistent approach interpreting the observed OA seems to be that of a
macroscopic electrodynamics, developed by Golovko and Levanyuk (1979), Meekes and
Janner (1988) and Dijkstrat al (1992a). It proceeds from an order parameter dependent
spatial inhomogeneity of the dielectric tensor in the IC phases. To simplify the analytical
description, the crystal optical parameters of the IC materials have been mainly evaluated
considering a square form for the modulation wave (Dijkgttal 1992a, Kushnir 1996,
Kushnir and Vlokh 1993). As a rough simulation of sinusoidal wave, Dijkstra (1991) and
Kushnir and Vlokh (1993) analysed rather formally the properties of the medium whose
dielectric function was modulated with a triangular shape. They assumed those properties
to be independent of the exact form of the modulation wave. Rigorously speaking, all
these results are valid directly for the multidomain low-temperature ordered phases in
the A,.BX,4 group crystals, as well as the IC phases in the soliton regime of modulation.
However, a question of principle is associated with the OA in the plane-wave (sinusoidal)
regime occurring not far from the normal-to-IC phase transition temperdturthe more
so because the work by Kobayashi (1990) points to an essential difference in the behaviour
of the OA in the mentioned modulation regimes. As seen from the data of 8aito
al (1990) for (N(CHs)4)2CuCl, of which the ordered phase is centrosymmetric too, the
OA nearT; can by no means be interpreted as a residual effect of the ordered phase.
Unlike the model of ‘discontinuously homogeneous’ medium applicable for the domain-like
region, the analysis of properties of sinusoidally modulated phases represents a cumbersome
problem which does not have an exact analytical solution. The influence of the plane wave
modulation on the polarization of electromagnetic waves has been dealt with in the study
by Stasyuk and Shvaika (1991), but the interpretation of the optical effects has been omitted
there.

It is to be noted that the experimental results on the optical rotatory power reported to
date for the light propagation directions parallel to the optical axes in the IC crystals (Chern
and Phillips 1972, Vlokhet al 1985, 1987, Kityk 1994) are much less known, although
they seem to be worthwhile owing to the simple and reliable experiment technique used.
Preliminary theoretical analysis of these results (Kushnir 1996, Kushnir and Vlokh 1993)
has been made only with the assumption of a square modulation wave. It indicates that
mechanisms of the OA manifested by the modulated materials in the absence of linear
birefringence must be different from those in the case of birefringent crystal sections, a
point that cannot be understood within the approach of Kobayashi (1990).

The purpose of this paper is a detailed theoretical discussion of crystal optical properties
of incommensurately modulated materials in the plane-wave region, including the light
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propagation directions parallel to and far from the optical axes. Some preliminary results
on this topic have been published elsewhere (Kusehal 1997). The main assumptions
leading to a model developed in this work are explained in section 2. Section 3 is devoted
to calculations of optical parameters of the modulated crystals. The results derived are
interpreted in section 4. Finally, the conclusions are drawn in section 5.

2. Basic assumptions

Spatially averaged structure of the IC phase of th8X, group crystals corresponds to a
centrostymmetric point groupmmof a high-temperature parent phase. This implies that the
dielectric tensor is real, symmetric and diagonal in the principal coordinate system, and the
componentsf?) have different values. However, taking into account spatial inhomogeneity
of the IC phase, the material equation may be written generally as (see Agranovich and
Ginzburg 1979, Meekes and Janner 1988)

Di(g) =Y () (h) +ieijigu(h)g" ) E;(q — h) @
h

where ei@ is a symmetric part of the dielectric tensog;;; the unit pseudotensor

antisymmetric in all its indicesgy; the gyration pseudotensag, the wave vector of light,

g™ the unit vector alongz, and h the vectors of the reciprocal lattice modified by the

IC modulation (Meekes and Janner 1988). In other words, besides the homogeneous
COHtI’ibUtiOI’lSSi(?)(O) and g,,(0) and (g (0) is zero in our case) corresponding to the
approximation of an average IC structure, one has to consider also that the components
related to the modulationh( # 0) can appear in the Fourier transform of the dielectric
tensore;;. In particular, the superspace symmetry of the IC phases does not forbid in
general the existence of the off-diagonal componeﬁf&{h) leading to local monoclinic
distortions of the structure, together with the local gyration compongnta). According

to Agranovich and Ginzburg (1979), the contributions to the optical properties originating
from structural inhomogeneities are proportional to the ratio of the inhomogeneity dimension
and the wavelength of light. This is why it is sufficient to retain in (1) only the longest-
wavelength vectors from the set &f We recall that the IC soft-mode wave vecigic

may be represented in the form (see, e.g. Cummins 1990)

qic =yc =qc +q 2

whereqc = (r/s)c* is the lock-in commensurate modulation wave vedier= (8(T)/s)c*,

c* the reciprocal lattice vector of the parent phase along the modulationcaxie adopt
hereafter the crystallographic orientation of Meekes and Janner (1988)ils the integers

that differ for different representatives of theBX, group, ands(7) « 1 the irrational
incomensurability parameter varying with temperature. As a result, the two independent
periodicities are superposed in an incommensurately modulated crystal, their values being
very close to each other. The small deviationgg§ from g just results in a long-wave
superlattice periodicity of which the period is an irrational fraction of the underlying lattice
parameter. Of course, consideration of the long-wavelength compoggniastead of

the h vectors, should mean a transition from a microscopic to a macroscopic description.
Relevant discussion related to this point may be found in the work of Dijkstaa(1992a).

The modulation associated with the wave vegjpiis expected to contribute notably to the
properties of the IC crystal. So, the electric polarization and the mechanical deformation
in the IC phase are modulated with the wave veetgr (see Hamanet al 1980). Dvorak

and Esayan (1982) and Esayan (1985) explained the striking effect of asymmetry in the
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characteristics of transverse ultrasonic waves observed in the ®IriEa (Fritz 1975)
and RbH(SeQ), (Esayaret al 1981) by the efficient coupling between the acoustic wave
and the modulation wave related &g. It should therefore be reasonable to put simply
h = q; in our further calculations. Simple estimation giwgs< ¢;c andgq/q; ~ 107* or
somewhat less, thus justifying the correctness of working in terms of macroscopic dielectric
parameters. Notice that the procedure proposed by Meekes and Janner (1988) allows us to
find shorter Fourier wave vectolts However their structural importance and, probably, the
contributions to any physical properties of the crystal decrease progressively on increasing
the corresponding indices (see also Etxebarria 1994).

Similarly to Dijkstraet al (1992a), we assume the dielectric properties of the IC crystal
to be spatially modulated with a uniquely defined (and constant over the entire volume of a
sample) period\;, being determined by; = 27/q;, whereq; has a dominant role at the
given temperature in the IC phase. This also means that the interaction of the modulated
structure with defects and impurities is neglected completely. Below we shall not account
for the modulation of diagonal componemg)) (see Golovko and Levanyuk 1979), for

the corresponding modulated increments are much less than the averageey%?iklﬂk}s

Let us restrict ourselves to considering only the local off-diagonal componé?%(q,)

and the gyration componengg; (q;) which are known (Dijkstraet al 1992a, Kushnir and
Vlokh 1993, Stasyuk and Shvaika 1991) to affect most appreciably the polarization of
electromagnetic waves travelling in the crystal.

The analysis of optical properties of the modulated medium is simplest for the light
propagation direction coincident with the modulation axis= z. Then the equiphase
planes of the modulation wave are orthogonalgtoand the properties of the medium
remain constant along the transverse directiorand y but vary along the; axis. It is
sufficient to account for only a spatial modulation of the dielectric parame{8s:) and
g33(r). Below, we shall show that, under certain conditions, the obtained results may have
a more general character, bein(%) applicable for the other propagation directions. With the

symmetry conditions?’ (—r) = .’ (r) andgu (—r) = —gu(r) (Meekes and Janner 1988),

we may write for the plane-wave region
0 0
£12 () = £,,12C0S¢
833(r) = 84,33SIN¢Y ()

wheree'°), and g, 33 are the amplitude factors and

©=q1z+¢o 4)

the phase of the modulation.

It is difficult to deal with the optical phenomena in a crystal for which the parame@rs
andgs3, on one hand, and the differenef —¢%), on the other hand, have arbitrary relative
values. A more convenient way is to concentrate separately on the two limiting cases for the
optical anisotropy, namely when (i) the light propagation directiég® inclined appreciably

compared to the optical axesff, 833 <K s(ﬁ) —eég)) and (i) the given direction is parallel to

the optical axis e(ﬁ) = g;‘;)). The latter corresponds to a hypothetical degenerate case of a
uniaxial crystal, while in reality the crystals of theBX,4 group are optically biaxial, with

the optical axes lying in thez plane. The method therefore looks somewhat artificial but
enables us to formulate distinctly the boundary conditions for the phase of the modulation

(see sections 3 and 4).
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3. Calculations of optical parameters of the modulated crystal

3.1. Light propagation directions far from the optical axes

To reveal the character of the light waves travelling in an optically anisotropic,
inhomogeneous medium characterized by (3), it is convenient to employ the operating
method of differential Jones matrices (Azzam and Bashara 1988, Jones 1948). In the
framework of the approach, the spatial evolution of the complex amplitude vegtor
describing the transverse electric field component of electromagnetic wave (the so-called
Jones vector) is determined by the relation (see Jones 1948)

i =NE (5)

where N is a differential propagation matrix related in a fundamental manner to the
dielectric parameters of the medium and dependent on the propagation direction and, for
inhomogeneous media, also on the longitudinal coordinatéNote that, for transparent
spatially homogeneous crystals, solving the equation (5) leads to a well known superposition
principle in crystal optics (see Azzam and Bashara 1988, Nye 1985). This is why the
equation (5) has the same wide limits of applicability as that principle. It must be stressed
that the exact electromagnetic theory of light propagation in dielectrics (Fedorov 1976) is
unnecessarily complicated. If the optical anisotropy in solid is weak (i.e. the difference
between the refractive indices of the normal waves is much less than the mean refractive
index, a condition that is fulfiled for the overwhelming majority of crystals), and we
neglect the feeble effects of non-orthogonality of the normal waves in transparent crystals,
the generality of the above approach is in fact the same as that of the exact electromagnetic
theory (see, e.g. the data of a quantitative analysis by Evdishchretrsdq1991)).

Based on (3), one can arrive at the following propagation mair{gsee the appendix):

1 ( ! —icazsing — llzcosw) ©)

N = 299\ icazsing — I12cOSp —1

with [ and /3, the non-modulated and the modulated parts of the linear birefringence,
respectively,c3z the modulated circular birefringence (or the OA) apdthe module of
the wave vector of light in vacuum (see the appendix). We should emphasize that the
relation (6) is correct unless the light wave normal becomes too close to the optical axes,
i.e. just under the conditions df,, c33 < [ obeyed in the experimental studies of OA
performed with the HAUP technique.

Equation (5) with theN matrix (6) dependent on can be solved approximately with a
standard perturbation theory. In the coordinate presentation it becomes

.d 1 . . 1
|8ijd_z + 540(|€i,‘k€kk sing +1;; cosp) | E; = ii‘]OlEi (7)

where §;; denotes the Kronecker delta,= x, y, + refers to the component and — to

y. According to the periodic character of the perturbation caused by the modula&@ of
and gz3, we suppose the solutions of (7) to take the form of Bloch-type waves (Golovko
and Levanyuk 1979). Their Cartesian components are

E; = u;(p) expligz) 8)

where the functions; (¢) which have the period of the long-wave IC superstructure may
be represented by

ui(p) =y _ U™ expling). )

n
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Similarly, for the wave vector of light we write the expansion
=9 +q%+---. (10)

In the unperturbed mediume (= 0) the two linearly polarized waves abbreviated hereafter
as ‘1’ and ‘2’ are the solutions, with

0
qi; = Fqol/2

© 0 0 0
U =1 Uf) =0 U =0 Uy =1. (11)
In the first approximationn( = +1)

UiV =0 Ul(_fl) = qo(Fcaz + 112)/[4(q1 — q2 £ q1)]
U = qo(kcas + ho)/[4ga —qa £q)] Uz, ” =0 (12)

whereg; > = g, are determined by (10) and (11). Since the next coefficiefits’ are
proportional to higher powers of the perturbation, we break the Fourier spectrum of the
Bloch amplitude off, retaining the same accuracy as that of deriving the matrix (6).

As seen from (10)-(12), the wave vectors of the light waves propagating in the
modulated medium, as well as the dispersion equation, are unaltered compared to a
homogeneous (non-modulated) medium, making impossible the optical effects such as the
existence of forbidden gaps fay (see Yariv and Yeh 1984). This is a consequence of
the fact that, for the propagation directions under investigation, the main contribution to
the normal wave refractive indices originates from a non-modulated fraction of the linear
birefringence. Incidentally, according to Fousek (1991), the IC modulation influences
the linear birefringence associated with the difference between diagonal components of
the dielectric tensor, resulting in corrections proportional to the square of the modulated
parameters. It should be stressed (see formula (11))thatontain only their anisotropic
parts. This corresponds to the fact that the basic propagation matrix (6) is normalized
(Azzam and Bashara 1988), i.e. its isotropic part related to the mean refractive index is
omitted as being unable to affect the polarization of light.

One can find from (8)-(12) the expressions for the electric fidilsand E, of
electromagnetic waves characteristic of the modulated medium:

E, = {ex + (qo/4) [(_633 + 1) exily) + (cas F o) exp(—igo)} ey} expig1z)
q1 — 42+ 41 q1—q2 — 41
B, — {(%/4) [(C33 + l12) explip) n (—c33+112) eXp(—|<P)i| e, + e_\,} expliga) (13)
g2 —q1+qi1 q2 —q1— (41

wheree, ande, are the unit vectors along theandy axes. Equations (13) prove that the
structural modulation manifests itself mainly in the polarization state of these waves. It may
be ascertained on the basis of the complex parameter= E1,,/E1 2 (See Azzam and
Bashara 1988). As with the lossless media, the waves appear to be orthegojal-£ —1,

* denoting a complex conjugation). Their polarization is in general ellipical and evolves
with passing on through the medium, depending on the exact coordin&tteother words,
because of their spatial inhomogeneity, these waves cannot be regarded as normal waves in
the usual sense (see Agranovich and Ginzburg 1979, Azzam and Bashara 1988).

It is well known that the character of the normal light waves is determined by the crystal
optical effects manifested by the anisotropic medium. For an optically inhomogeneous
medium, unambiguous solving of the inverse problem (identification of crystal optical effects
on the basis of the known polarization of the waves) is difficult, particularly because of a
spatial dependence of polarization state of the normal waves mentioned before (see also
Kushnir 1996). In order to avoid ambiguity, one has to consider a crystal plate of a finite
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thickness ). Our next step corresponds to the method proposed by Kushnir (1996). Let us
calculate the integral Jones mathkof the plate defined by the relatidd,,, = ME;, (E;,
and E,,; being respectively the Jones vectors of the light incidentzoa Q) and emergent
(z = d) from the plate), using decomposition &%, and E,,,; on the Jones vectors of the
normal waves. Then it is possible to pass in our analysis from the spatially inhomogeneous
normal waves to the effective normal waves of the entire crystal (the eigenvectorsif the
matrix). The polarization state of the latter does not formally depend on coordinate but only
the crystal thickness and the values of the phase of the modulation wave at the boundaries
(po = ¢(0) and ¢; = ¢(d)). We shall just characterize the modulated crystal in terms of
the effective parameters referred to its effective normal waves.

Following the procedure described above, we obtain

_ exp(—i A/2) —2(k +i AB)sin(A/2)
M= (Z(k — i AB)siN(A/2) exp(iA/2) ) (14)

where

k = a1 (COSp; — COSyp) COL(A /2) + ar—(Sing1 + Singp)

AB = —a_(Sing1 — Singp) CO(A /2) + a4 (COSp1 + COSep). 13)
The coefficientsx,. are expressed via the sums of and the differences between the wave
amplitudests!™” + Uy (or U £ UL Y):

v, — ¢33(q1/q0) — 112l o — ¢33l — l12(q1/90)
202 - (91/90)2) T 202 (q1/90)®

and A = (g2 — q1)d = qold represents the total phase retardation for the two normal waves
attributed to the linear birefringence. The optical parameteasid A9 in (14) and (15)
determine respectively the ellipticity and the polarization azimuth of one of the (orthogonal)
effective normal waves (see Kushnir and Vlokh 1993). Note that the relations (15) cannot
be applied whem\ approaches zero, owing to the assumptions made above. The analysis
shows (see also the next subsection) that the terms proportional to/@t and responsible

for the behaviour ok and A6 when the wave normal becomes close to the optical axis,
should remain finite in realityk(— +1 or 0, andA® — =+ /4 or 0).

(16)

3.2. Optical axis directions

In the case of light propagation directions parallel to the optical akes @) we cannot

apply directly the perturbation theory when solving the equation (5) with the propagation
matrix (6). An elegant alternative way suggested by Azzam and Bashara (1972) consists in
employing the equation for the evolution of light polarization with the distance

d
id_zK(Z) = —N12k%(2) + (N22 — N11)k () + Nas (17)
where
k(z) = E\(2)/ Ex(2) (18)

is the polarization parameter (see above) written in terms of Cartesian components of the
Jones vector of light. Equation (17) for inhomogeneous media<£ N;;(z)) represents the
general Ricatti equation which does not have analytical solution for arbitrary dependence
N;;(z). One of the exceptions described by Azzam and Bashara (1972) refers to the problem
of propagation of light along the helical axis in a cholesteric liquid crystal.
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Equation (17) may be solved by separation of variables for the fractinand N,
of the N matrix (see the appendix) which describe media with modulated local indicatrix
rotation and the gyration, respectively. For example, substituting the elemigptsn (17)
yields
k(z) =tan(C — y, CoSp) (19)
with
Ve = (c3390)/(2q1) (20)

and C a constant of integration. It may be found from the initial conditiof®) = «o,
wherexq refers to the polarization state of the light incident at the crystal:

Ko + tan(y, Cosgo)

tanC = . (21)
1 — ko tan(y, coseg)
From (19) and (21) we have
tan[y, (cosgo — cos
(d) = [V (COS@o 1)] + Ko . (22)
1 — kotan[y, (Cospo — cosg1)]
When comparing (22) with the well known relation (Azzam and Bashara 1988)
M M
k(d) = Zzt Marko (23)
M11 + M1oko

one can see that the coefficients of a bilinear transformati@nxg) given by (22) determine,

up to a complex factor, the integral Jones mawixof the modulated crystal. This factor
may be found from the condition of unitarity df, since the latter matrix describes a lossless
medium. We obtain the normalized Jones matrix that specifies completely the influence of
the crystal on the polarization of light:

M, = R[—y,(cosp; — cosgo)]. (24)

The matrix of the crystal with the modulated componeﬁ{ may be derived in a similar
manner:

_ [ coslys(singy — singg)]  isin[y.(singy — singp)] (25)
* 7 \isin[y.(sing; — singp)]  cos[y; (sing; — singo)]
where
ve = (l12q0)/ (2q1). (26)

From (24) and (25) we are now able to reveal the character of optical phenomena taking
place in the modulated crystal. Following Kushnir and Vlokh (1993), we shall consider
separately the influence on these phenomena of the modulati@r% ahd gss.

4. Discussion of the model

We begin from discussing the optical properties of the IC crystals for propagation directions
other than the optical axes. As in the studies by Kushnir (1996) and Kushnir and Vlokh
(1993), it should be natural to refer to the nonzero paraméteasd A6 as the OA and

the optical indicatrix rotation which appear owing to the modulation, irrespective of the
different origin of those effects compared to spatially homogeneous crystals. One can see
from (15) that the OA is still present in the modulated crystal, despite the fact that the
symmetry group of the ‘average structure’ must include an inversion centre. We note that
little attention has been paid to the indicatrix rotation effect, although its order of magnitude
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is expected to be the same as that of the OA (see formula (15)), and the effect has been
detected in experimental studies (see Kusknial 1993, Ortegaet al 1992, and references
therein).

To evaluate the size of the optical effects, it is necessary to account for the smallness of
the ratiogo/q; = A;/A0 Characterizing the inhomogeneity of the modulated medium, and
the parameter (I = 10°*~107?) in (16)f. Then the expressions for the amplitude coefficient
may be written as

ay & —ko(IAs/ho) + Abo(r;/r0)%, a— ~ —ko(lh1/ro)? + Abo(IA1/Xo) (27)

where we putg = c33/(2]) and A6y = [12/(2]) to be equal to the ellipticity of the normal
wave (i.e. the OA) and the indicatrix rotation occurring in a corresponding acentric, low-
symmetry non-modulated crystal. With the results for the square-wave modulation (Kushnir
and Vlokh 1993) one can derive

k/ko = Apyp = (IX;/Ao) (28)

where Ay p is the phase retardation per half-period of the modulation. Notice that less
significant terms of orderix;/A0)? are dropped from (28). A comparison of formulae (15)
and (27) with (28) substantiates that the results obtained for the two modulation regimes
agree almost quantitatively. Further inspection shows that the conclusion remains valid also
if the model is complicated by analysing local distortions of the modulation wave owing
to interactions between the IC structure and defects, as well as the unipolarity effect (see
Kushnir and Vlokh 1993).

It is interesting to compare the results of the present study with that of Stasyuk and
Shvaika (1991). Proceeding from their relations for the normal light waves, it is easy to
derive formulae similar to (15) in which, however, the coefficiamtsand «_ turn out to
be proportional to X; /A0)? and ¢.;/A0)3, contrary to (27). This should in fact imply the
absence of any observable OA. Moreover, the relative values of the contributionsared
«_ originating fromky and A6, are different from those obtained by Kushnir and Viokh
(1993) and in the present work. The reasons for such a discrepancy are still not quite clear.

Let us examine more closely the case of light propagation along the optical axes.
Rigorously speaking, the Jones matrices (24) and (25) describe, respectively, an optical
rotator (purely optically active crystal) and a linear phase retardation plate (linearly
birefringent crystal) with the fast axis tilted by the angler/4 with respect tox and
y axes. However both the optical rotation

¢ = —y,(COSp1 — COSpo) (29)
and the phase retardatiax,. attributed to the birefringencis,
Ay = 2y:(Sing1 — singo) (30)

appear to be feeble effects. Indeed, apart from a small ggfig;, in (20) and (26) (see
above), the modulation amplitudg, 33 cannot exceed the typical values for the gyration

tensors in acentric non-modulated crystals €t10%—see e.g., Nye 1985). The parameter

85012 has to be of the same order of magnitude. This is why the matrices (24) and (25)

ohly slightly differ from a unit matrix which describes an optically isotropic medium.

1 Under the matching condition for the linearly polarized normal waves of the unperturbed system:(= g;

or x;/xo = 1/1), equation (16) displays a possibility for resonance increaseasfd A6. This should mean that
the linear birefringence concerned with the difference between the diagonal compq(ﬁ)e'm:nverwhelmed, and

the crystal becomes either optically active oty +1) or linearly birefringent only, but with the corresponding
fast axis inclined byA® — /4 to the principal axes (cf the conclusions drawn by Zapasskiy and Kozlov (1995)).
In incommensurately modulated crystals the phase matching condition may be surely regarded as impossible.
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Furthermore, the optical rotation effect does not accumulate with increasing thickness of
sample, unlike the situation in homogeneous crystals. Finally, as seen from (29) and (30),
¢ and A, are rigorously zero whenever the phase of the modulation remains the same at
both sample surfaces{ = ¢o).

To compare the results for the optical axis directions with those of the study by Kushnir
and Vlokh (1993), we consider now the most general cagge &f ¢o. It may conventionally
be termed as a local boundary unipolariof the modulated structure, using the analogy with
the domain-like layered structures considered in the mentioned work. It must be emphasized
that the model of ‘extended’ (or ‘regular’) unipolarity in which each neighbouring half-
period of the modulation has different lengths (see Kushnir and Vlokh 1993) looks more
realistic but cumbersome to describe analytically in the plane-wave region. Here we do
not display the relevant results, which lead to conclusions qualitatively the same as those
presented below. One can expect the unipolatity = ¢; — ¢ to be small. Expressing
Ag in terms of the modulation wavelength,

Ap =2 (Ar; /1) (31)
and introducing the unipolarity parameter

n=Axr/d (32)
one derives from (20), (29), (31) and (32) that the optical rotation may be written as

¢ = ¢or) OF ¢ = ¢or’m(d/1) (33)

for the structures with the initial phase valugs= 7 /2 andgy = 0, respectively. In (33),
¢o has the meaning of the optical rotation in a homogeneous crystal sample of the same
thicknessd:

¢o = mcazd /[ ro. (34)
Equations (33) agree with the corresponding relations obtained for the soliton region
(Kushnir and Vlokh 1993), thus proving that the main conclusions of the model based
on treating the IC phase as a periodic spatial distribution of the dielectric tensor do not
depend on the exact shape of the modulation wave.

Of particular interest is a comparison of the results presented for the alternative light
wave normal directions, at least for the reason of verifying the self-consistency of the
developed model. A correspondence between these results is concerned with the polarization
states of the normal waves. It is provided by the first terms on the right-hand side of
(15) which should result in optical behaviours of rotator or a linear phase retardation
plate types wherl — 0, in agreement with (24) and (25). In contrast, the values of
the retardation parametegs and A, predicted by (29) and (30) cannot be deduced from
(14), since the contributions to the total phase retardafioarising from the modulation
have been neglected (see subsection 3.1). On the whole, the optical parameters determined
by (15), (29) and (30) may be divided into the amplitude and phase factors dependent,
respectively, on the modulation amplitude and the phase of the modulation wave. As to
the amplitude factor, it is proportional tgA— g1)/q; in both cases. This term is much
smaller for the optical axis directions, being referred exclusively to a modulated fraction of
the total birefringenceqgt — g1 = qol12 Or gocas). Another drastic difference between the
propagation directions parallel to and far from the optical axes lies in the phase factors. In
the former case the optical anisotropy arises only when a periodicity condgitieng is
broken, i.e. in a unipolar modulated structure (see the above discussion).

1 The term appears because the neighbouring half-periods of the modulation, having opposite signs of the
modulated parameters, may also include spontaneous polarizations (or strains) of the opposite signs.
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It is well known that the IC phase can acquire a small unipolarity, due to the interactions
with structural defects. However the effect is possible perhaps not far from the 1C-to-lock-in
phase transition temperature but not in the plane-wave region. The model hence predicts
a zero or negligible OA along the optical axes in sinusoidally modulated IC phase. All
of the relevant experimental studies performed on th8X@y family representatives and
the NaNQ crystals (Chern and Phillips 1972, Violdt al 1985, 1987, Kityk 1994) have
revealed an insignificant optical rotatory power observed only in the vicinity of the low-
temperature lock-in phase. Furthermore, a correlation of the effect size and the unipolarity
of samples has been demonstrated. This confirms the validity of the presented model. At
the same time, in linearly birefringent crystal sections the phase factor may, in principle, be
of the order of unity (see equations (15)), and the magnitude of the OA requires a further
examination.

A crucial problem is represented by the boundary conditions for the phase of the
modulation wave, which seems to be worth considering in more detail. In the early study
by Golovko and Levanyuk (1979) is was suggested that the crystal boundaries could occupy
arbitrary positions, irrespective of the IC superstructure period, and these positions could
change not only by an integer number of spatial periods of the modulation. This has
to lead to a random distribution afy and ¢; values over the crystal surfaces. When
accounting for the ‘averaging’ processes for the measured optical parameters owing to
extreme smallness af;, a finite cross-section of the probing light beam and inevitable non-
parallelity of the sample surfaces, one can conclude within the framework of the model (see
formulae (15)) that the OA observed in any practical experiment should be cancelled out
to zero (see also Etxebarria 1994). To explain the OA measured in the HAUP experiments,
Dijkstra et al (1992a) supposed that, in accordance with some energy considerations and
periodicity requirements, the modulation phase was to be the same at both surfaces of
crystal plate. This implies that integer numberof the modulation wavelengths must fit
into the crystal dimension along the modulation axis, i.e. the condition= d is fulfilled
similarly to some extent to the situation with the normal vibration modes of a finite optical
string.

Comparing to the natural relatiope = d (with ¢ the cell parameter in the modulation
direction andp an integer), the assumptign = ¢o (equivalent tani; = d) does not look
evident, the more so because the properties of crystals in the vicinity of their surfaces are
less investigated so far, and they can differ from those of the crystal bulk (€rar1981).

It should be reasonable, although somewhat oversimplified, to suppose that a pinning of the
modulation wave, due to the requirement of energy stability of the modulated system, takes
place at the surface which represents in fact a defect-like formation (see e.g. Hatano
1980, Janovec 1983). For the soliton modulation regime, the conditign= d correlates

with the conclusion that the phase solitons nucleate and annihilate in pairs (Nattermann
1986). Specific mechanisms ensuring a constancy of the modulation phase over the surfaces
under changing sample thickness may be variations of the numbead (or) local variations

of the IC modulation wavelengths; occurring in the surface layer (Chen al 1981). In

all other respects, the presented model should not be critical to the local changgs in

as expected from the analysis by Kushnir and Viokh (1993) for the square modulation
wave.

One can see that the exact equality; = d contradicts an incommensurate character
of the modulation, since the fraction /c cannot be irrational witlw and p simultaneously
integer. Besides the mentioned locgl variations, a way out can be offered by the
hypothesis of a ‘devil's staircase’ behaviour of the modulation wave vector (Bak and Bachm
1980). Withq;c = (r'/s")c* (+' ands’ being integers), it becomes clear that the condition
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mM; = d reduces to a general requirement that the spatial period of (any) superstructure must
fit into the corresponding crystal dimension. If it is really so, then even the approximate
equality q;c ~ (r'/s")c*, taking place for each temperature inside the incommensurately
modulated phase, should provide an approximate fulfilment of the conditiea ¢g. As

a result, the boundary conditions for the phase of the IC modulation should affect different
physical properties of the crystal. An appropriate example is the studies of influence of
sample shape on the low-frequency dielectric parameters @HR,4),ZnCl, compound
(Svelebaet al 1995), irrespective of the exact interpretation given by the authors.

Under the conditiorp; = ¢o the optical parameters of the modulated crystal have to
be described by the second terms on the right-hand side of (15), and the OA is mainly
associated with the modulation of tlag) component (see equation (27)). Furthermore, the
OA in the optical axis directions will be zero, in accordance with the above discussion. It is
still not clear enough which of the valueg (=¢,) are preferable and realized in practice.

A sequence of complete modulation cells (the half-periods of a square modulation wave)
considered by Dijkstra (1991) and Dijkstet al (1992a) corresponds to a zero value of the
modulated parameter at the crystal boundaries and should meaptha® (or ) in the

case of modulation of the gyration tensor, as seen from (3) and (4). Besides such a ‘perfect’
(in terms of Kushnir and Vlokh 1993) structure, the modulated structure gyith 77 /2 (or

—m/2) for which thegss module has a maximum value at the boundaries is also physically
distinguishable and may be suspected to be stable. We conclude from (15) that only the
valuespy = +m/2 provide a situation observed in most of the HAUP experiments (the
OA k # 0 and the indicatrix rotatiom\é = 0). Then the ‘node’ of thes(lg) modulation

wave and the ‘hump’ of thgss wave will be at the crystal boundaries. In the framework

of the present approach, it is hardly believable that there exist some grounds for one of
the enantiomorphous structures, characterizegdy= 0 or = (andx/2 or —n/2), to be
privileged. If the selection happens due to accidental effects such as the interactions with
defects, then the OA observed on different samples may be of the opposite signs (see also
discussion by Dijkstra (1991), Dijkstrat al (1992a) and Kushnir and Vlokh (1993)).

Since a macroscopic gyration tensor componggthas been measured in most of the
HAUP experiments and the actual optical axis directions lie inxth@lane, we now turn
to the problem of how to generalize our model for light wave normals different from the
z axis. The problem is not trivial, for we cannot simply use the model of a ‘transversely
homogeneous’ optical medium as above. The most important fact is that the dielectric
properties of the medium should vary from one point of the surface to another, and it
becomes impossible to formulate the boundary conditions for the phase of modulation
in the case of a plane electromagnetic wave travelling along a direction not parallel to
the modulation axis (see Stasyuk and Shvaika 1991). The assumption of Golovko and
Levanyuk (1979) that, for the propagation directions perpendicular agis, the electric
field of the light wave can be averaged oyeand structural modulation should not manifest
itself in the optical properties, seems reasonable. For the ‘tilted’ directions, particularly in
the xz plane, we obviously have a case intermediate between that discussed throughout
the paper and that just mentioned. The main conclusions of the present work are then
expected to be valid. Only when assuming that the dielectric properties do not vary evenly
along the crystal boundaries (i.e. the surfaces have a tendency to keep definite values of
the phase of modulation, being ‘quasi-equiphase’ surfaces) can we avoid cancellation of
the measured macroscopic OA. Insignificant extra peculiarities of the model will be longer
modulation period )(iff = A;/cosa, with o the angle between the light wave normal and
the modulation axis), together with the fact that the modulation of the mfﬁ)eand gu
components must be additionally accounted for.



Crystal optics of incommensurate phases 9271

5. Conclusions

In this work a phenomenological model is developed for interpreting the crystal optical
properties of the IC phases characterized by a spatially average inversion symmetry. It
should be valid for description of the OA of the IC crystals in a plane-wave region and in
the case of light propagating along the modulation axis, although the methods of generalizing
the model to arbitrary propagation directions are outlined. Unlike the study by Kushnir and
Vlokh (1993), we worked mainly in terms of an ideal modulated structure which was not
unipolar and distorted by interactions with defects. It is revealed that incommensurability
of the modulation, leading to appearance of long-wave Fourier components of the dielectric
tensor, acts notably on the normal wave polarization and can cause an apparent OA effect.
The model is not in general tied to a certain IC crystal, but involves the dielectric tensor
allowed by the superspace symmetry, which depend on the value and the temperature
behaviour of the modulation wave vector (Meekes and Janner 1988). Because of the
insignificant role of external defects in the properties of the IC phases in the plane-wave
region, consideration of the related effects was rather schematic. It is evident that defects and
structural unipolarity can also affect the optical parameters. However the latter contributions
are sample dependent and cannot result in reproducible OA.

Taking into account the difficulties in analysing the most general light wave normal
direction, we considered the two limiting cases of practical importance, the directions
parallel to and far from the optical axes. Essentially different conclusions are drawn in
these cases. For the optical axis directions, the ideal incommensurately modulated structure
shows no OA. The effect can be imposed by the unipolarity and defect influences only,
in excellent agreement with all of the experimental data reported on HBXAfamily
compounds. In our belief, comprehending the mentioned difference must be a necessary
feature of the true theory that explains the OA observed in the IC crystals (see Kushnir
1996).

As seen from a comparison with the results presented by Dijkstra (1991), Dijkstra
et al (1992a) and Kushnir and Vlokh (1993), the crystal optical properties of the IC
phases are not sensitive to the exact modulation shape (cf Kobayashi 1990). However,
specific physical mechanisms for the modulation of local dielectric parameters in the
domain-like and the plane-wave modulation regimes are different. They are concerned
respectively with a spontaneous electrogyration effect occurring due to the spontaneous
electric polarization included in the nearly commensurate domains, and a direct coupling of
dielectric susceptibility with the order parameter of the IC phase transition.

On the whole, the presented model predicts a small value of the macroscopic OA in the
modulated crystals, when compared with acentric macroscopically homogeneous crystals.
Furthermore, the model is very critically dependent on the boundary conditions for the
phase of the modulation wave, and, in order to avoid cancelling out the observed OA, one
has to assume this phase to be the same at both crystal surfaces (see also Dijkstra 1991).
This means in general that the spatial period of any (one-dimensional) superlattice in a solid
should fit into the length of the crystal along the modulation direction.

Acknowledgments

The author thanks Professbl Polovinko, Dis A V Kityk and S A Sveleba, ahL O Lokot
for valuable discussions. This work was supported by a Scholarship from the Ukrainian
Cabinet.



9272 O S Kushnir
Appendix

The N matrix of the modulated crystal may be derived from the integral Jones matrix
M(z, Az) of a thin slice of the medium of thicknegs; located at the coordinate Let the
propagation direction be parallel to the optical axis. Consider first the modulatioi@f
parameter only. It is easy to show that the real symmetric part of the dielectric tensor with
the components.) = &%), &5 and¢) can be reduced to diagonal form in the coordinate
systemx’y’z" with the axest’ andy’ rotated by+45> compared to the principal axesand

y. Then using a standard Jones matrix of a linear phase retardation plate with the rotated

principal axes (Azzam and Bashara 1988) and the relation (3) yields

_ ( cosllazgo Az/2) cosy] isin[(l12g0 Az/2) cOSy]
M:(z, A2) = (isin[112q0 Az/2)cosp] cos[(l12g0 Az/2) COSy] ) (A1)

wherely; = sf)lz/ﬁ is the amplitude of the modulated contribution to the linear birefringence

associated Witrsg, i the mean refractive indexjo = 27 /Ao and Ao the wavelength of
light in vacuum. Taking into account the modulationgag only, we have

M, (z, Az) = R[(c33q0 Az/2) Sing] (A2)
with
R = (o o) (A3)

the matrix of rotation by the anglg, andcs3 = g, 33/7 the amplitude of the modulated
circular birefringence (see Nye 1985). From the relation betwéamdM(z, Az) matrices
(Jones 1948)

M(z, Az) — |

N= lim —————— (A4)
Az—0 Az

wherel is the identity matrix, and (Al) and (A2) we obtain
1 0 1
NS = —qullz COosp (l 0) (A5)

i . 0 -1
Ny = 540c33Sing (1 0 > : (A6)
Since the propagation matrices characterizing different elementary types of optical
anisotropy may be put together algebraically (Jones 1948), the overall matrix of the medium
with the modulated parametexg) and g33 takes the form

N =N, + N,. (A7)

Finally, theN matrix for the propagation directions inclined appreciably to the optical
axes may be derived in a quite similar manner. The only difference is that we have to proceed
from a more general integral Jones matrix (Azzam and Bashara 1988) describing a crystal
possessing a large non-modulated linear birefringénee(s@ — g;‘;))/(z;a) referred to the
diagonal components of the dielectric tensor. Taking into account the relative smallness of
the modulation amplitudezsff_’)12 andg, 33 and performing the calculations give equation (6)
of section 2 which generalizes tiNmatrix defined by (A5)—(A7).
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