
Crystal optical properties of incommensurate phases in the plane-wave modulation region

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys.: Condens. Matter 9 9259

(http://iopscience.iop.org/0953-8984/9/43/011)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 10:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/9/43
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter9 (1997) 9259–9273. Printed in the UK PII: S0953-8984(97)78898-2

Crystal optical properties of incommensurate phases in the
plane-wave modulation region

O S Kushnir
Physics Department, Lviv State University, Lviv 54, PO Box 3154, 290054 Lviv, Ukraine

Received 24 October 1996, in final form 8 July 1997

Abstract. Crystal optical properties of anisotropic optical materials of which the dielectric
tensor is spatially modulated with a sinusoidal wave form are studied in the framework of the
Jones calculus. Propagation of polarized light along the directions parallel to and far from the
optical axes is considered. Polarization of the normal waves of the medium and the Jones matrix
of a finite modulated crystal are derived, enabling us to ascertain the parameters of the apparent
macroscopic optical activity. The developed model should describe the optical effects in a plane-
wave region of incommensurate phases with the average inversion symmetry, occurring in the
A2BX4 family crystals. The boundary conditions for the phase of the modulation wave, which
play a key role in crystal optics of incommensurate phases, are discussed. The model predicts a
relatively small optical activity in the birefringent crystal sections and negligible or zero effect
in the optical axis directions. The conclusions agree well, at least, with the non-contradictory
experimental results on optical rotatory power of the A2BX4 crystals. A comparison with the
results derived earlier for the square modulation wave proves that the main conclusions of the
model do not depend on the exact modulation shape.

1. Introduction

In spite of remarkable success in understanding the nature and properties of
incommensurately modulated phases in dielectrics (Cummins 1990) there still remain
experimental results that have not yet been satisfactorily explained. One of the most
prominent examples is the existence of optical activity (OA) in incommensurate (IC)
crystals of the A2BX4 family. The effect has been discovered by Uesu and Kobayashi
(1985) with a complex experimental technique (the so-called HAUP, high-accuracy universal
polarimeter—see Kobayashiet al 1986) applied to linearly birefringent crystal sections. In
the last decade, an increasing number of experimental studies has been reported by different
authors on this controversial problem (see, e.g. Dijkstraet al 1992b, Folciaet al 1993,
Kobayashiet al 1993, 1994, Kushniret al 1993, Meekes and Janner 1988, Ortegaet al
1992, Saitoet al 1990). From the very recent results we mention here those obtained by
Ortegaet al (1995), Simonet al (1996), Kremers and Meekes (1995, 1996) and Kremers
et al (1996). In the first of the quoted works, an OA value which is almost outside
the capacity of the experiment has been found in the case of Rb2ZnCl4, and the data
of Kobayashiet al (1988), when reprocessed, have been shown to give nearly the same
result. Kremerset al (1996) have reported a detailed study of(N(CH3)4)2ZnCl4, with
a conclusion concerning the clearly zero gyration componentsg11, g33 and g13 (see also
Simon et al 1996) that contradicts the observations by Kobayashiet al (1993). At the
same time, the measurements by Kremers and Meekes (1996) on the related compound
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(N(CH3)4)2ZnCl2.8Br1.2 have revealed that the OA can be affected by the IC modulation.
Finally, a non-zero OA and optical indicatrix rotation have been observed by Kremers and
Meekes (1995) in the IC(N(CH3)4)2CuCl4. Although differing in many important details,
this agrees with the findings of Uesu and Kobayashi (1985) and Saitoet al (1990).

Theoretical aspects of the problem attract much attention from researchers (Dijkstraet al
1992a, Etxebarria 1994, Kobayashi 1990, Kushnir and Vlokh 1993, Meekes and Janner 1988
etc). Indeed, the characteristic dimension relevant for the optical response increases in the
modulated medium up to the spatial period of the IC superstructure, providing the possibility
of a strong spatial dispersion that can give rise to an OA effect (Agranovich and Ginzburg
1979). However OA as a third-rank tensorial property should be macroscopically forbidden
(see Dvoraket al 1983, Folciaet al 1993 and several references therein, Nye 1985) because
of the inversion centre included in the point symmetry group of the ‘average’ IC structure
(the superspace groups describing exhaustively the symmetry of the modulated crystals are
centrosymmetric too).

The most consistent approach interpreting the observed OA seems to be that of a
macroscopic electrodynamics, developed by Golovko and Levanyuk (1979), Meekes and
Janner (1988) and Dijkstraet al (1992a). It proceeds from an order parameter dependent
spatial inhomogeneity of the dielectric tensor in the IC phases. To simplify the analytical
description, the crystal optical parameters of the IC materials have been mainly evaluated
considering a square form for the modulation wave (Dijkstraet al 1992a, Kushnir 1996,
Kushnir and Vlokh 1993). As a rough simulation of sinusoidal wave, Dijkstra (1991) and
Kushnir and Vlokh (1993) analysed rather formally the properties of the medium whose
dielectric function was modulated with a triangular shape. They assumed those properties
to be independent of the exact form of the modulation wave. Rigorously speaking, all
these results are valid directly for the multidomain low-temperature ordered phases in
the A2BX4 group crystals, as well as the IC phases in the soliton regime of modulation.
However, a question of principle is associated with the OA in the plane-wave (sinusoidal)
regime occurring not far from the normal-to-IC phase transition temperatureTi , the more
so because the work by Kobayashi (1990) points to an essential difference in the behaviour
of the OA in the mentioned modulation regimes. As seen from the data of Saitoet
al (1990) for (N(CH3)4)2CuCl4 of which the ordered phase is centrosymmetric too, the
OA near Ti can by no means be interpreted as a residual effect of the ordered phase.
Unlike the model of ‘discontinuously homogeneous’ medium applicable for the domain-like
region, the analysis of properties of sinusoidally modulated phases represents a cumbersome
problem which does not have an exact analytical solution. The influence of the plane wave
modulation on the polarization of electromagnetic waves has been dealt with in the study
by Stasyuk and Shvaika (1991), but the interpretation of the optical effects has been omitted
there.

It is to be noted that the experimental results on the optical rotatory power reported to
date for the light propagation directions parallel to the optical axes in the IC crystals (Chern
and Phillips 1972, Vlokhet al 1985, 1987, Kityk 1994) are much less known, although
they seem to be worthwhile owing to the simple and reliable experiment technique used.
Preliminary theoretical analysis of these results (Kushnir 1996, Kushnir and Vlokh 1993)
has been made only with the assumption of a square modulation wave. It indicates that
mechanisms of the OA manifested by the modulated materials in the absence of linear
birefringence must be different from those in the case of birefringent crystal sections, a
point that cannot be understood within the approach of Kobayashi (1990).

The purpose of this paper is a detailed theoretical discussion of crystal optical properties
of incommensurately modulated materials in the plane-wave region, including the light
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propagation directions parallel to and far from the optical axes. Some preliminary results
on this topic have been published elsewhere (Kushniret al 1997). The main assumptions
leading to a model developed in this work are explained in section 2. Section 3 is devoted
to calculations of optical parameters of the modulated crystals. The results derived are
interpreted in section 4. Finally, the conclusions are drawn in section 5.

2. Basic assumptions

Spatially averaged structure of the IC phase of the A2BX4 group crystals corresponds to a
centrostymmetric point groupmmmof a high-temperature parent phase. This implies that the
dielectric tensor is real, symmetric and diagonal in the principal coordinate system, and the
componentsε(0)ii have different values. However, taking into account spatial inhomogeneity
of the IC phase, the material equation may be written generally as (see Agranovich and
Ginzburg 1979, Meekes and Janner 1988)

Di(q) =
∑
h

(ε
(0)
ij (h)+ ieijkgkl(h)q

(u)
l )Ej (q − h) (1)

where ε(0)ij is a symmetric part of the dielectric tensor,eijk the unit pseudotensor
antisymmetric in all its indices,gkl the gyration pseudotensor,q the wave vector of light,
q(u) the unit vector alongq, andh the vectors of the reciprocal lattice modified by the
IC modulation (Meekes and Janner 1988). In other words, besides the homogeneous
contributions ε(0)ij (0) and gkl(0) and (gkl(0) is zero in our case) corresponding to the
approximation of an average IC structure, one has to consider also that the components
related to the modulation (h 6= 0) can appear in the Fourier transform of the dielectric
tensorεij . In particular, the superspace symmetry of the IC phases does not forbid in
general the existence of the off-diagonal componentsε

(0)
ij (h) leading to local monoclinic

distortions of the structure, together with the local gyration componentsgkl(h). According
to Agranovich and Ginzburg (1979), the contributions to the optical properties originating
from structural inhomogeneities are proportional to the ratio of the inhomogeneity dimension
and the wavelengthλ of light. This is why it is sufficient to retain in (1) only the longest-
wavelength vectors from the set ofh. We recall that the IC soft-mode wave vectorqIC
may be represented in the form (see, e.g. Cummins 1990)

qIC = γ c∗ = qC + qI (2)

whereqC = (r/s)c∗ is the lock-in commensurate modulation wave vector,qI = (δ(T )/s)c∗,
c∗ the reciprocal lattice vector of the parent phase along the modulation axisc (we adopt
hereafter the crystallographic orientation of Meekes and Janner (1988)),r ands the integers
that differ for different representatives of the A2BX4 group, andδ(T ) � 1 the irrational
incomensurability parameter varying with temperature. As a result, the two independent
periodicities are superposed in an incommensurately modulated crystal, their values being
very close to each other. The small deviation ofqIC from qC just results in a long-wave
superlattice periodicity of which the period is an irrational fraction of the underlying lattice
parameter. Of course, consideration of the long-wavelength componentsqI , instead of
the h vectors, should mean a transition from a microscopic to a macroscopic description.
Relevant discussion related to this point may be found in the work of Dijkstraet al (1992a).
The modulation associated with the wave vectorqI is expected to contribute notably to the
properties of the IC crystal. So, the electric polarization and the mechanical deformation
in the IC phase are modulated with the wave vectorsqI (see Hamanoet al 1980). Dvorak
and Esayan (1982) and Esayan (1985) explained the striking effect of asymmetry in the
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characteristics of transverse ultrasonic waves observed in the IC Ba2MnF4 (Fritz 1975)
and RbH3(SeO4)2 (Esayanet al 1981) by the efficient coupling between the acoustic wave
and the modulation wave related toqI . It should therefore be reasonable to put simply
h = qI in our further calculations. Simple estimation givesqI � qIC andq/qI ≈ 10−1 or
somewhat less, thus justifying the correctness of working in terms of macroscopic dielectric
parameters. Notice that the procedure proposed by Meekes and Janner (1988) allows us to
find shorter Fourier wave vectorsh. However their structural importance and, probably, the
contributions to any physical properties of the crystal decrease progressively on increasing
the corresponding indices (see also Etxebarria 1994).

Similarly to Dijkstraet al (1992a), we assume the dielectric properties of the IC crystal
to be spatially modulated with a uniquely defined (and constant over the entire volume of a
sample) periodλI , being determined byλI = 2π/qI , whereqI has a dominant role at the
given temperature in the IC phase. This also means that the interaction of the modulated
structure with defects and impurities is neglected completely. Below we shall not account
for the modulation of diagonal componentsε(0)ii (see Golovko and Levanyuk 1979), for
the corresponding modulated increments are much less than the average valuesε

(0)
ii (0).

Let us restrict ourselves to considering only the local off-diagonal componentsε
(0)
ij (qI )

and the gyration componentsgkl(qI ) which are known (Dijkstraet al 1992a, Kushnir and
Vlokh 1993, Stasyuk and Shvaika 1991) to affect most appreciably the polarization of
electromagnetic waves travelling in the crystal.

The analysis of optical properties of the modulated medium is simplest for the light
propagation direction coincident with the modulation axisc = z. Then the equiphase
planes of the modulation wave are orthogonal toq, and the properties of the medium
remain constant along the transverse directionsx and y but vary along thez axis. It is
sufficient to account for only a spatial modulation of the dielectric parametersε

(0)
12 (r) and

g33(r). Below, we shall show that, under certain conditions, the obtained results may have
a more general character, being applicable for the other propagation directions. With the
symmetry conditionsε(0)ij (−r) = ε(0)ij (r) andgkl(−r) = −gkl(r) (Meekes and Janner 1988),
we may write for the plane-wave region

ε
(0)
12 (r) = ε(0)a,12 cosϕ
g33(r) = ga,33 sinϕ (3)

whereε(0)a,12 andga,33 are the amplitude factors and

ϕ = qI z+ ϕ0 (4)

the phase of the modulation.
It is difficult to deal with the optical phenomena in a crystal for which the parametersε

(0)
12

andg33, on one hand, and the differenceε(0)11 −ε(0)22 , on the other hand, have arbitrary relative
values. A more convenient way is to concentrate separately on the two limiting cases for the
optical anisotropy, namely when (i) the light propagation directionz is inclined appreciably
compared to the optical axes (ε(0)12 , g33� ε

(0)
11 −ε(0)22 ) and (ii) the given direction is parallel to

the optical axis (ε(0)11 = ε(0)22 ). The latter corresponds to a hypothetical degenerate case of a
uniaxial crystal, while in reality the crystals of the A2BX4 group are optically biaxial, with
the optical axes lying in thexz plane. The method therefore looks somewhat artificial but
enables us to formulate distinctly the boundary conditions for the phase of the modulation
(see sections 3 and 4).
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3. Calculations of optical parameters of the modulated crystal

3.1. Light propagation directions far from the optical axes

To reveal the character of the light waves travelling in an optically anisotropic,
inhomogeneous medium characterized by (3), it is convenient to employ the operating
method of differential Jones matrices (Azzam and Bashara 1988, Jones 1948). In the
framework of the approach, the spatial evolution of the complex amplitude vectorE
describing the transverse electric field component of electromagnetic wave (the so-called
Jones vector) is determined by the relation (see Jones 1948)

i
dE

dz
= NE (5)

where N is a differential propagation matrix related in a fundamental manner to the
dielectric parameters of the medium and dependent on the propagation direction and, for
inhomogeneous media, also on the longitudinal coordinatez. Note that, for transparent
spatially homogeneous crystals, solving the equation (5) leads to a well known superposition
principle in crystal optics (see Azzam and Bashara 1988, Nye 1985). This is why the
equation (5) has the same wide limits of applicability as that principle. It must be stressed
that the exact electromagnetic theory of light propagation in dielectrics (Fedorov 1976) is
unnecessarily complicated. If the optical anisotropy in solid is weak (i.e. the difference
between the refractive indices of the normal waves is much less than the mean refractive
index, a condition that is fulfilled for the overwhelming majority of crystals), and we
neglect the feeble effects of non-orthogonality of the normal waves in transparent crystals,
the generality of the above approach is in fact the same as that of the exact electromagnetic
theory (see, e.g. the data of a quantitative analysis by Evdishchenkoet al (1991)).

Based on (3), one can arrive at the following propagation matrixN (see the appendix):

N = 1

2
q0

(
l −ic33 sinϕ − l12 cosϕ

ic33 sinϕ − l12 cosϕ −l
)

(6)

with l and l12 the non-modulated and the modulated parts of the linear birefringence,
respectively,c33 the modulated circular birefringence (or the OA) andq0 the module of
the wave vector of light in vacuum (see the appendix). We should emphasize that the
relation (6) is correct unless the light wave normal becomes too close to the optical axes,
i.e. just under the conditions ofl12, c33 � l obeyed in the experimental studies of OA
performed with the HAUP technique.

Equation (5) with theN matrix (6) dependent onz can be solved approximately with a
standard perturbation theory. In the coordinate presentation it becomes[

iδij
d

dz
+ 1

2
q0(ieijkckk sinϕ + lij cosϕ)

]
Ej = ±1

2
q0lEi (7)

whereδij denotes the Kronecker delta,i = x, y, + refers to the componentx and− to
y. According to the periodic character of the perturbation caused by the modulation ofε

(0)
12

and g33, we suppose the solutions of (7) to take the form of Bloch-type waves (Golovko
and Levanyuk 1979). Their Cartesian components are

Ei = ui(ϕ) exp(iqz) (8)

where the functionsui(ϕ) which have the period of the long-wave IC superstructure may
be represented by

ui(ϕ) =
∑
n

U
(n)
i exp(inϕ). (9)
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Similarly, for the wave vector of light we write the expansion

q = q(0) + q(1) + · · · . (10)

In the unperturbed medium (n = 0) the two linearly polarized waves abbreviated hereafter
as ‘1’ and ‘2’ are the solutions, with

q
(0)
1,2 = ∓q0l/2

U
(0)
1x = 1 U

(0)
1y = 0 U

(0)
2x = 0 U

(0)
2y = 1. (11)

In the first approximation (n = ±1)

U
(±1)
1x = 0 U

(±1)
1y = q0(∓c33+ l12)/[4(q1− q2± qI )]

U
(±1)
2x = q0(±c33+ l12)/[4(q2− q1± qI )] U

(±1)
2y = 0 (12)

whereq1,2 = q(0)1,2 are determined by (10) and (11). Since the next coefficientsU
(±n)
i are

proportional to higher powers of the perturbation, we break the Fourier spectrum of the
Bloch amplitude off, retaining the same accuracy as that of deriving the matrix (6).

As seen from (10)–(12), the wave vectors of the light waves propagating in the
modulated medium, as well as the dispersion equation, are unaltered compared to a
homogeneous (non-modulated) medium, making impossible the optical effects such as the
existence of forbidden gaps forq (see Yariv and Yeh 1984). This is a consequence of
the fact that, for the propagation directions under investigation, the main contribution to
the normal wave refractive indices originates from a non-modulated fraction of the linear
birefringence. Incidentally, according to Fousek (1991), the IC modulation influences
the linear birefringence associated with the difference between diagonal components of
the dielectric tensor, resulting in corrections proportional to the square of the modulated
parameters. It should be stressed (see formula (11)) thatq1,2 contain only their anisotropic
parts. This corresponds to the fact that the basic propagation matrix (6) is normalized
(Azzam and Bashara 1988), i.e. its isotropic part related to the mean refractive index is
omitted as being unable to affect the polarization of light.

One can find from (8)–(12) the expressions for the electric fieldsE1 and E2 of
electromagnetic waves characteristic of the modulated medium:

E1 =
{
ex + (q0/4)

[
(−c33+ l12) exp(iϕ)

q1− q2+ qI + (c33+ l12) exp(−iϕ)

q1− q2− qI

]
ey

}
exp(iq1z)

E2 =
{
(q0/4)

[
(c33+ l12) exp(iϕ)

q2− q1+ qI + (−c33+ l12) exp(−iϕ)

q2− q1− qI

]
ex + ey

}
exp(iq2z) (13)

whereex andey are the unit vectors along thex andy axes. Equations (13) prove that the
structural modulation manifests itself mainly in the polarization state of these waves. It may
be ascertained on the basis of the complex parameterκe1,2 = E1,2y/E1,2x (see Azzam and
Bashara 1988). As with the lossless media, the waves appear to be orthogonal (κe1κ

∗
e2 = −1,

∗ denoting a complex conjugation). Their polarization is in general ellipical and evolves
with passing on through the medium, depending on the exact coordinatez. In other words,
because of their spatial inhomogeneity, these waves cannot be regarded as normal waves in
the usual sense (see Agranovich and Ginzburg 1979, Azzam and Bashara 1988).

It is well known that the character of the normal light waves is determined by the crystal
optical effects manifested by the anisotropic medium. For an optically inhomogeneous
medium, unambiguous solving of the inverse problem (identification of crystal optical effects
on the basis of the known polarization of the waves) is difficult, particularly because of a
spatial dependence of polarization state of the normal waves mentioned before (see also
Kushnir 1996). In order to avoid ambiguity, one has to consider a crystal plate of a finite
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thickness (d). Our next step corresponds to the method proposed by Kushnir (1996). Let us
calculate the integral Jones matrixM of the plate defined by the relationEout = MEin (Ein

andEout being respectively the Jones vectors of the light incident on (z = 0) and emergent
(z = d) from the plate), using decomposition ofEin andEout on the Jones vectors of the
normal waves. Then it is possible to pass in our analysis from the spatially inhomogeneous
normal waves to the effective normal waves of the entire crystal (the eigenvectors of theM
matrix). The polarization state of the latter does not formally depend on coordinate but only
the crystal thickness and the values of the phase of the modulation wave at the boundaries
(ϕ0 = ϕ(0) andϕ1 = ϕ(d)). We shall just characterize the modulated crystal in terms of
the effective parameters referred to its effective normal waves.

Following the procedure described above, we obtain

M =
(

exp(−i1/2) −2(k + i1θ) sin(1/2)
2(k − i1θ) sin(1/2) exp(i1/2)

)
(14)

where

k = α+(cosϕ1− cosϕ0) cot(1/2)+ α−(sinϕ1+ sinϕ0)

1θ = −α−(sinϕ1− sinϕ0) cot(1/2)+ α+(cosϕ1+ cosϕ0).
(15)

The coefficientsα± are expressed via the sums of and the differences between the wave
amplitudesU(+1)

2x ± U(−1)
2x (or U(+1)

1y ± U(−1)
1y ):

α+ = c33(qI /q0)− l12l

2(l2− (qI /q0)2)
α− = c33l − l12(qI /q0)

2(l2− (qI /q0)2)
(16)

and1 = (q2− q1)d = q0ld represents the total phase retardation for the two normal waves
attributed to the linear birefringence. The optical parametersk and1θ in (14) and (15)
determine respectively the ellipticity and the polarization azimuth of one of the (orthogonal)
effective normal waves (see Kushnir and Vlokh 1993). Note that the relations (15) cannot
be applied when1 approaches zero, owing to the assumptions made above. The analysis
shows (see also the next subsection) that the terms proportional to cot(1/2), and responsible
for the behaviour ofk and1θ when the wave normal becomes close to the optical axis,
should remain finite in reality (k→±1 or 0, and1θ →±π/4 or 0).

3.2. Optical axis directions

In the case of light propagation directions parallel to the optical axes (l = 0) we cannot
apply directly the perturbation theory when solving the equation (5) with the propagation
matrix (6). An elegant alternative way suggested by Azzam and Bashara (1972) consists in
employing the equation for the evolution of light polarization with the distancez:

i
d

dz
κ(z) = −N12κ

2(z)+ (N22−N11)κ(z)+N21 (17)

where

κ(z) = Ey(z)/Ex(z) (18)

is the polarization parameter (see above) written in terms of Cartesian components of the
Jones vector of light. Equation (17) for inhomogeneous media (Nij = Nij (z)) represents the
general Ricatti equation which does not have analytical solution for arbitrary dependence
Nij (z). One of the exceptions described by Azzam and Bashara (1972) refers to the problem
of propagation of light along the helical axis in a cholesteric liquid crystal.
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Equation (17) may be solved by separation of variables for the fractionsNε and Ng

of the N matrix (see the appendix) which describe media with modulated local indicatrix
rotation and the gyration, respectively. For example, substituting the elementsNg,ij in (17)
yields

κ(z) = tan(C − γg cosϕ) (19)

with

γg = (c33q0)/(2qI ) (20)

andC a constant of integration. It may be found from the initial conditionκ(0) = κ0,
whereκ0 refers to the polarization state of the light incident at the crystal:

tanC = κ0+ tan(γg cosϕ0)

1− κ0 tan(γg cosϕ0)
. (21)

From (19) and (21) we have

κ(d) = tan[γg(cosϕ0− cosϕ1)] + κ0

1− κ0 tan[γg(cosϕ0− cosϕ1)]
. (22)

When comparing (22) with the well known relation (Azzam and Bashara 1988)

κ(d) = M21+M22κ0

M11+M12κ0
(23)

one can see that the coefficients of a bilinear transformationκ(d, κ0) given by (22) determine,
up to a complex factor, the integral Jones matrixM of the modulated crystal. This factor
may be found from the condition of unitarity ofM, since the latter matrix describes a lossless
medium. We obtain the normalized Jones matrix that specifies completely the influence of
the crystal on the polarization of light:

Mg = R[−γg(cosϕ1− cosϕ0)]. (24)

The matrix of the crystal with the modulated componentε
(0)
12 may be derived in a similar

manner:

Mε =
(

cos[γε(sinϕ1− sinϕ0)] i sin[γε(sinϕ1− sinϕ0)]
i sin[γε(sinϕ1− sinϕ0)] cos[γε(sinϕ1− sinϕ0)]

)
(25)

where

γε = (l12q0)/(2qI ). (26)

From (24) and (25) we are now able to reveal the character of optical phenomena taking
place in the modulated crystal. Following Kushnir and Vlokh (1993), we shall consider
separately the influence on these phenomena of the modulations ofε

(0)
12 andg33.

4. Discussion of the model

We begin from discussing the optical properties of the IC crystals for propagation directions
other than the optical axes. As in the studies by Kushnir (1996) and Kushnir and Vlokh
(1993), it should be natural to refer to the nonzero parametersk and1θ as the OA and
the optical indicatrix rotation which appear owing to the modulation, irrespective of the
different origin of those effects compared to spatially homogeneous crystals. One can see
from (15) that the OA is still present in the modulated crystal, despite the fact that the
symmetry group of the ‘average structure’ must include an inversion centre. We note that
little attention has been paid to the indicatrix rotation effect, although its order of magnitude
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is expected to be the same as that of the OA (see formula (15)), and the effect has been
detected in experimental studies (see Kushniret al 1993, Ortegaet al 1992, and references
therein).

To evaluate the size of the optical effects, it is necessary to account for the smallness of
the ratioq0/qI = λI /λ0 characterizing the inhomogeneity of the modulated medium, and
the parameterl (l ∼= 104–10−2) in (16)†. Then the expressions for the amplitude coefficient
may be written as

α+ ≈ −k0(lλI /λ0)+1θ0(lλI /λ0)
2, α− ≈ −k0(lλI /λ0)

2+1θ0(lλI /λ0) (27)

where we putk0 = c33/(2l) and1θ0 = l12/(2l) to be equal to the ellipticity of the normal
wave (i.e. the OA) and the indicatrix rotation occurring in a corresponding acentric, low-
symmetry non-modulated crystal. With the results for the square-wave modulation (Kushnir
and Vlokh 1993) one can derive

k/k0
∼= 1HP = π(lλI /λ0) (28)

where1HP is the phase retardation per half-period of the modulation. Notice that less
significant terms of order (lλI /λ0)

2 are dropped from (28). A comparison of formulae (15)
and (27) with (28) substantiates that the results obtained for the two modulation regimes
agree almost quantitatively. Further inspection shows that the conclusion remains valid also
if the model is complicated by analysing local distortions of the modulation wave owing
to interactions between the IC structure and defects, as well as the unipolarity effect (see
Kushnir and Vlokh 1993).

It is interesting to compare the results of the present study with that of Stasyuk and
Shvaika (1991). Proceeding from their relations for the normal light waves, it is easy to
derive formulae similar to (15) in which, however, the coefficientsα+ andα− turn out to
be proportional to (λI /λ0)

2 and (λI /λ0)
3, contrary to (27). This should in fact imply the

absence of any observable OA. Moreover, the relative values of the contributions toα+ and
α− originating fromk0 and1θ0 are different from those obtained by Kushnir and Vlokh
(1993) and in the present work. The reasons for such a discrepancy are still not quite clear.

Let us examine more closely the case of light propagation along the optical axes.
Rigorously speaking, the Jones matrices (24) and (25) describe, respectively, an optical
rotator (purely optically active crystal) and a linear phase retardation plate (linearly
birefringent crystal) with the fast axis tilted by the angle±π/4 with respect tox and
y axes. However both the optical rotation

φ = −γg(cosϕ1− cosϕ0) (29)

and the phase retardation1ε attributed to the birefringencel12,

1ε = 2γε(sinϕ1− sinϕ0) (30)

appear to be feeble effects. Indeed, apart from a small ratioq0/qI in (20) and (26) (see
above), the modulation amplitudega,33 cannot exceed the typical values for the gyration
tensors in acentric non-modulated crystals (10−6–10−4—see e.g., Nye 1985). The parameter
ε
(0)
a,12 has to be of the same order of magnitude. This is why the matrices (24) and (25)

only slightly differ from a unit matrix which describes an optically isotropic medium.

† Under the matching condition for the linearly polarized normal waves of the unperturbed system (q2− q1 = qI
or λI /λ0 = 1/l), equation (16) displays a possibility for resonance increase ofk and1θ . This should mean that
the linear birefringence concerned with the difference between the diagonal componentsε

(0)
ii is overwhelmed, and

the crystal becomes either optically active only (k→±1) or linearly birefringent only, but with the corresponding
fast axis inclined by1θ → π/4 to the principal axes (cf the conclusions drawn by Zapasskiy and Kozlov (1995)).
In incommensurately modulated crystals the phase matching condition may be surely regarded as impossible.
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Furthermore, the optical rotation effect does not accumulate with increasing thickness of
sample, unlike the situation in homogeneous crystals. Finally, as seen from (29) and (30),
φ and1ε are rigorously zero whenever the phase of the modulation remains the same at
both sample surfaces (ϕ1 = ϕ0).

To compare the results for the optical axis directions with those of the study by Kushnir
and Vlokh (1993), we consider now the most general case ofϕ1 6= ϕ0. It may conventionally
be termed as a local boundary unipolarity† of the modulated structure, using the analogy with
the domain-like layered structures considered in the mentioned work. It must be emphasized
that the model of ‘extended’ (or ‘regular’) unipolarity in which each neighbouring half-
period of the modulation has different lengths (see Kushnir and Vlokh 1993) looks more
realistic but cumbersome to describe analytically in the plane-wave region. Here we do
not display the relevant results, which lead to conclusions qualitatively the same as those
presented below. One can expect the unipolarity1ϕ = ϕ1 − ϕ0 to be small. Expressing
1ϕ in terms of the modulation wavelength,

1ϕ = 2π(1λI/λI ) (31)

and introducing the unipolarity parameter

η = 1λI/d (32)

one derives from (20), (29), (31) and (32) that the optical rotation may be written as

φ = φ0η or φ = φ0η
2π(d/λI ) (33)

for the structures with the initial phase valuesϕ0 = π/2 andϕ0 = 0, respectively. In (33),
φ0 has the meaning of the optical rotation in a homogeneous crystal sample of the same
thicknessd:

φ0 = πc33d/λ0. (34)

Equations (33) agree with the corresponding relations obtained for the soliton region
(Kushnir and Vlokh 1993), thus proving that the main conclusions of the model based
on treating the IC phase as a periodic spatial distribution of the dielectric tensor do not
depend on the exact shape of the modulation wave.

Of particular interest is a comparison of the results presented for the alternative light
wave normal directions, at least for the reason of verifying the self-consistency of the
developed model. A correspondence between these results is concerned with the polarization
states of the normal waves. It is provided by the first terms on the right-hand side of
(15) which should result in optical behaviours of rotator or a linear phase retardation
plate types whenl → 0, in agreement with (24) and (25). In contrast, the values of
the retardation parametersφ and1ε predicted by (29) and (30) cannot be deduced from
(14), since the contributions to the total phase retardation1 arising from the modulation
have been neglected (see subsection 3.1). On the whole, the optical parameters determined
by (15), (29) and (30) may be divided into the amplitude and phase factors dependent,
respectively, on the modulation amplitude and the phase of the modulation wave. As to
the amplitude factor, it is proportional to (q2 − q1)/qI in both cases. This term is much
smaller for the optical axis directions, being referred exclusively to a modulated fraction of
the total birefringence (q2 − q1 = q0l12 or q0c33). Another drastic difference between the
propagation directions parallel to and far from the optical axes lies in the phase factors. In
the former case the optical anisotropy arises only when a periodicity conditionϕ1 = ϕ0 is
broken, i.e. in a unipolar modulated structure (see the above discussion).

† The term appears because the neighbouring half-periods of the modulation, having opposite signs of the
modulated parameters, may also include spontaneous polarizations (or strains) of the opposite signs.
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It is well known that the IC phase can acquire a small unipolarity, due to the interactions
with structural defects. However the effect is possible perhaps not far from the IC-to-lock-in
phase transition temperature but not in the plane-wave region. The model hence predicts
a zero or negligible OA along the optical axes in sinusoidally modulated IC phase. All
of the relevant experimental studies performed on the A2BX4 family representatives and
the NaNO2 crystals (Chern and Phillips 1972, Vlokhet al 1985, 1987, Kityk 1994) have
revealed an insignificant optical rotatory power observed only in the vicinity of the low-
temperature lock-in phase. Furthermore, a correlation of the effect size and the unipolarity
of samples has been demonstrated. This confirms the validity of the presented model. At
the same time, in linearly birefringent crystal sections the phase factor may, in principle, be
of the order of unity (see equations (15)), and the magnitude of the OA requires a further
examination.

A crucial problem is represented by the boundary conditions for the phase of the
modulation wave, which seems to be worth considering in more detail. In the early study
by Golovko and Levanyuk (1979) is was suggested that the crystal boundaries could occupy
arbitrary positions, irrespective of the IC superstructure period, and these positions could
change not only by an integer number of spatial periods of the modulation. This has
to lead to a random distribution ofϕ0 and ϕ1 values over the crystal surfaces. When
accounting for the ‘averaging’ processes for the measured optical parameters owing to
extreme smallness ofλI , a finite cross-section of the probing light beam and inevitable non-
parallelity of the sample surfaces, one can conclude within the framework of the model (see
formulae (15)) that the OA observed in any practical experiment should be cancelled out
to zero (see also Etxebarria 1994). To explain the OA measured in the HAUP experiments,
Dijkstra et al (1992a) supposed that, in accordance with some energy considerations and
periodicity requirements, the modulation phase was to be the same at both surfaces of
crystal plate. This implies that integer numberm of the modulation wavelengths must fit
into the crystal dimension along the modulation axis, i.e. the conditionmλI = d is fulfilled
similarly to some extent to the situation with the normal vibration modes of a finite optical
string.

Comparing to the natural relationpc = d (with c the cell parameter in the modulation
direction andp an integer), the assumptionϕ1 = ϕ0 (equivalent tomλI = d) does not look
evident, the more so because the properties of crystals in the vicinity of their surfaces are
less investigated so far, and they can differ from those of the crystal bulk (Chenet al 1981).
It should be reasonable, although somewhat oversimplified, to suppose that a pinning of the
modulation wave, due to the requirement of energy stability of the modulated system, takes
place at the surface which represents in fact a defect-like formation (see e.g. Hamanoet al
1980, Janovec 1983). For the soliton modulation regime, the conditionmλI = d correlates
with the conclusion that the phase solitons nucleate and annihilate in pairs (Nattermann
1986). Specific mechanisms ensuring a constancy of the modulation phase over the surfaces
under changing sample thickness may be variations of the numberm and (or) local variations
of the IC modulation wavelengthsλI occurring in the surface layer (Chenet al 1981). In
all other respects, the presented model should not be critical to the local changes inλI ,
as expected from the analysis by Kushnir and Vlokh (1993) for the square modulation
wave.

One can see that the exact equalitymλI = d contradicts an incommensurate character
of the modulation, since the fractionλI /c cannot be irrational withm andp simultaneously
integer. Besides the mentioned localλI variations, a way out can be offered by the
hypothesis of a ‘devil’s staircase’ behaviour of the modulation wave vector (Bak and Bachm
1980). WithqIC = (r ′/s ′)c∗ (r ′ and s ′ being integers), it becomes clear that the condition
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mλI = d reduces to a general requirement that the spatial period of (any) superstructure must
fit into the corresponding crystal dimension. If it is really so, then even the approximate
equality qIC ≈ (r ′/s ′)c∗, taking place for each temperature inside the incommensurately
modulated phase, should provide an approximate fulfilment of the conditionϕ1 = ϕ0. As
a result, the boundary conditions for the phase of the IC modulation should affect different
physical properties of the crystal. An appropriate example is the studies of influence of
sample shape on the low-frequency dielectric parameters of (N(CH3)4)2ZnCl4 compound
(Svelebaet al 1995), irrespective of the exact interpretation given by the authors.

Under the conditionϕ1 = ϕ0 the optical parameters of the modulated crystal have to
be described by the second terms on the right-hand side of (15), and the OA is mainly
associated with the modulation of theε(0)12 component (see equation (27)). Furthermore, the
OA in the optical axis directions will be zero, in accordance with the above discussion. It is
still not clear enough which of the valuesϕ0 (=ϕ1) are preferable and realized in practice.
A sequence of complete modulation cells (the half-periods of a square modulation wave)
considered by Dijkstra (1991) and Dijkstraet al (1992a) corresponds to a zero value of the
modulated parameter at the crystal boundaries and should mean thatϕ0 = 0 (or π ) in the
case of modulation of the gyration tensor, as seen from (3) and (4). Besides such a ‘perfect’
(in terms of Kushnir and Vlokh 1993) structure, the modulated structure withϕ0 = π/2 (or
−π/2) for which theg33 module has a maximum value at the boundaries is also physically
distinguishable and may be suspected to be stable. We conclude from (15) that only the
valuesϕ0 = ±π/2 provide a situation observed in most of the HAUP experiments (the
OA k 6= 0 and the indicatrix rotation1θ = 0). Then the ‘node’ of theε(0)12 modulation
wave and the ‘hump’ of theg33 wave will be at the crystal boundaries. In the framework
of the present approach, it is hardly believable that there exist some grounds for one of
the enantiomorphous structures, characterized byϕ0 = 0 or π (andπ/2 or −π/2), to be
privileged. If the selection happens due to accidental effects such as the interactions with
defects, then the OA observed on different samples may be of the opposite signs (see also
discussion by Dijkstra (1991), Dijkstraet al (1992a) and Kushnir and Vlokh (1993)).

Since a macroscopic gyration tensor componentg13 has been measured in most of the
HAUP experiments and the actual optical axis directions lie in thexz plane, we now turn
to the problem of how to generalize our model for light wave normals different from the
z axis. The problem is not trivial, for we cannot simply use the model of a ‘transversely
homogeneous’ optical medium as above. The most important fact is that the dielectric
properties of the medium should vary from one point of the surface to another, and it
becomes impossible to formulate the boundary conditions for the phase of modulation
in the case of a plane electromagnetic wave travelling along a direction not parallel to
the modulation axis (see Stasyuk and Shvaika 1991). The assumption of Golovko and
Levanyuk (1979) that, for the propagation directions perpendicular toz axis, the electric
field of the light wave can be averaged overz, and structural modulation should not manifest
itself in the optical properties, seems reasonable. For the ‘tilted’ directions, particularly in
the xz plane, we obviously have a case intermediate between that discussed throughout
the paper and that just mentioned. The main conclusions of the present work are then
expected to be valid. Only when assuming that the dielectric properties do not vary evenly
along the crystal boundaries (i.e. the surfaces have a tendency to keep definite values of
the phase of modulation, being ‘quasi-equiphase’ surfaces) can we avoid cancellation of
the measured macroscopic OA. Insignificant extra peculiarities of the model will be longer
modulation period (λeffI = λI / cosα, with α the angle between the light wave normal and
the modulation axis), together with the fact that the modulation of the otherε

(0)
ij and gkl

components must be additionally accounted for.
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5. Conclusions

In this work a phenomenological model is developed for interpreting the crystal optical
properties of the IC phases characterized by a spatially average inversion symmetry. It
should be valid for description of the OA of the IC crystals in a plane-wave region and in
the case of light propagating along the modulation axis, although the methods of generalizing
the model to arbitrary propagation directions are outlined. Unlike the study by Kushnir and
Vlokh (1993), we worked mainly in terms of an ideal modulated structure which was not
unipolar and distorted by interactions with defects. It is revealed that incommensurability
of the modulation, leading to appearance of long-wave Fourier components of the dielectric
tensor, acts notably on the normal wave polarization and can cause an apparent OA effect.
The model is not in general tied to a certain IC crystal, but involves the dielectric tensor
allowed by the superspace symmetry, which depend on the value and the temperature
behaviour of the modulation wave vector (Meekes and Janner 1988). Because of the
insignificant role of external defects in the properties of the IC phases in the plane-wave
region, consideration of the related effects was rather schematic. It is evident that defects and
structural unipolarity can also affect the optical parameters. However the latter contributions
are sample dependent and cannot result in reproducible OA.

Taking into account the difficulties in analysing the most general light wave normal
direction, we considered the two limiting cases of practical importance, the directions
parallel to and far from the optical axes. Essentially different conclusions are drawn in
these cases. For the optical axis directions, the ideal incommensurately modulated structure
shows no OA. The effect can be imposed by the unipolarity and defect influences only,
in excellent agreement with all of the experimental data reported on the A2BX4 family
compounds. In our belief, comprehending the mentioned difference must be a necessary
feature of the true theory that explains the OA observed in the IC crystals (see Kushnir
1996).

As seen from a comparison with the results presented by Dijkstra (1991), Dijkstra
et al (1992a) and Kushnir and Vlokh (1993), the crystal optical properties of the IC
phases are not sensitive to the exact modulation shape (cf Kobayashi 1990). However,
specific physical mechanisms for the modulation of local dielectric parameters in the
domain-like and the plane-wave modulation regimes are different. They are concerned
respectively with a spontaneous electrogyration effect occurring due to the spontaneous
electric polarization included in the nearly commensurate domains, and a direct coupling of
dielectric susceptibility with the order parameter of the IC phase transition.

On the whole, the presented model predicts a small value of the macroscopic OA in the
modulated crystals, when compared with acentric macroscopically homogeneous crystals.
Furthermore, the model is very critically dependent on the boundary conditions for the
phase of the modulation wave, and, in order to avoid cancelling out the observed OA, one
has to assume this phase to be the same at both crystal surfaces (see also Dijkstra 1991).
This means in general that the spatial period of any (one-dimensional) superlattice in a solid
should fit into the length of the crystal along the modulation direction.
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Appendix

The N matrix of the modulated crystal may be derived from the integral Jones matrix
M(z,1z) of a thin slice of the medium of thickness1z located at the coordinatez. Let the
propagation directionz be parallel to the optical axis. Consider first the modulation ofε

(0)
12

parameter only. It is easy to show that the real symmetric part of the dielectric tensor with
the componentsε(0)11 = ε(0)22 , ε(0)33 andε(0)12 can be reduced to diagonal form in the coordinate
systemx ′y ′z′ with the axesx ′ andy ′ rotated by±45◦ compared to the principal axesx and
y. Then using a standard Jones matrix of a linear phase retardation plate with the rotated
principal axes (Azzam and Bashara 1988) and the relation (3) yields

Mε(z,1z) =
(

cos[(l12q01z/2) cosϕ] i sin[(l12q01z/2) cosϕ]
i sin[l12q01z/2) cosϕ] cos[(l12q01z/2) cosϕ]

)
(A1)

wherel12 = ε(0)a,12/n̄ is the amplitude of the modulated contribution to the linear birefringence

associated withε(0)12 , n̄ the mean refractive index,q0 = 2π/λ0 and λ0 the wavelength of
light in vacuum. Taking into account the modulation ofg33 only, we have

Mg(z,1z) = R[(c33q01z/2) sinϕ] (A2)

with

R(β) =
(

cosβ − sinβ
sinβ cosβ

)
(A3)

the matrix of rotation by the angleβ, and c33 = ga,33/n̄ the amplitude of the modulated
circular birefringence (see Nye 1985). From the relation betweenN andM(z,1z) matrices
(Jones 1948)

N = lim
1z→0

M(z,1z)− I
1z

(A4)

whereI is the identity matrix, and (A1) and (A2) we obtain

Nε = −1

2
q0l12 cosϕ

(
0 1
1 0

)
(A5)

Ng = i

2
q0c33 sinϕ

(
0 −1
1 0

)
. (A6)

Since the propagation matrices characterizing different elementary types of optical
anisotropy may be put together algebraically (Jones 1948), the overall matrix of the medium
with the modulated parametersε(0)12 andg33 takes the form

N = Nε + Ng. (A7)

Finally, theN matrix for the propagation directions inclined appreciably to the optical
axes may be derived in a quite similar manner. The only difference is that we have to proceed
from a more general integral Jones matrix (Azzam and Bashara 1988) describing a crystal
possessing a large non-modulated linear birefringencel = (ε(0)11 − ε(0)22 )/(2n̄) referred to the
diagonal components of the dielectric tensor. Taking into account the relative smallness of
the modulation amplitudesε(0)a,12 andga,33 and performing the calculations give equation (6)
of section 2 which generalizes theN matrix defined by (A5)–(A7).
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